Interpretation of Clinical Data Based on C4.5 Algorithm for the Diagnosis of Coronary Heart Disease
نویسندگان
چکیده
OBJECTIVES The interpretation of clinical data for the diagnosis of coronary heart disease can be done using algorithms in data mining. Most clinical data interpretation systems for diagnosis developed using data mining algorithms with a black-box approach cannot recognize examination attribute relationships with the incidence of coronary heart disease. METHODS This study proposes a system to interpretation clinical examination results for the diagnosis of coronary heart disease based the decision tree algorithm. This system comprises several stages. First, oversampling is carried out by a combination of the synthetic minority oversampling technique (SMOTE), feature selection, and the C4.5 classification algorithm. System testing is done using k-fold cross-validation. The performance parameters are sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV) and the area under the curve (AUC). RESULTS The results showed that the performance of the system has a sensitivity of 74.7%, a specificity of 93.7%, a PPV of 74.2%, an NPV of 93.7%, and an AUC of 84.2%. CONCLUSIONS This study demonstrated that, by using C4.5 algorithms, data can be interpreted in the form of a decision tree, to aid the understanding of the clinician. In addition, the proposed system can provide better performance by category.
منابع مشابه
MMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملA Case Report for Ischemic Heart Disease Treatment in a 53-Year-Old Man Based on Iranian Integrative Medicine in Bojnurd
Background: Coronary artery disease is one of the most common causes of death in the world. Despite significant advances in the diagnosis and treatment of these diseases, they are still considered a major health problem in the world. The purpose of this report is to provide the clinical experience of Iranian Integrative Medicine, which has the greatest therapeutic effect in the...
متن کاملDiagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search
In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...
متن کاملDiagnosis of Heart Disease Using Binary Grasshopper Optimization Algorithm and K-Nearest Neighbors
Introduction: The heart is one of the main organs of the human body, and its unhealthiness is an important factor in human mortality. Heart disease may be asymptomatic, but medical tests can predict and diagnose it. Diagnosis of heart disease requires extensive experience of specialist physicians. The aim of this study is to help physicians diagnose heart disease based on hybrid Binary Grasshop...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کامل